
Module Hot-Swapping for Dynamic
Update and Reconfiguration in K42

Andrew Baumann Jeremy Kerr
University of NSW & National ICT Australia IBM Linux Technology Center

Jonathan Appavoo, Dilma Da Silva, Orran Krieger, Robert W. Wisniewski
IBM T.J. Watson Research Center

Abstract

K42 is an open-source research OS for 64-bit multipro-
cessor systems, focusing on the PowerPC® architecture.
It uses an object-oriented design to achieve good perfor-
mance, scalability, customisability, and maintainability.
K42 supports the Linux® API and ABI allowing it to use
unmodified Linux applications and libraries, and can
be deployed by running on an existing installation of
Linux. The development process of K42 is intended to
share concepts with Linux; many ideas have been trans-
ferred between the two projects.

K42 implements each system resource (such as an
open file or process) as a set of unique object instances,
and supports hot-swapping, which allows these objects
to be changed on-the-fly. This enables dynamic re-
configuration and adaptability of the system, and when
combined with a kernel module loader, supports dy-
namic update and hot patching of the OS. Examples
of this might include dynamically adapting to file ac-
cess patterns, or replacing insecure code in the network
stack without downtime.

In this paper we will introduce K42, discuss its
hot-swapping capability, and suggest possible ways in
which this technology could benefit Linux.

1 Introduction

In a kernel supporting loadable modules, such as Linux,
kernel code can be changed without a reboot, but only
in restricted circumstances. Code can be added, but it
can be removed only when the entire kernel is inactive,
and only when no other parts of the kernel hold refer-
ences to that code. For example, to update a file system

module requires unmounting all file systems using that
module, which in turn means killing all processes that
have files open on those file systems. If the root file sys-
tem happens to be anext3file system, and a bug needs
to be fixed in theext3code, a kernel with loadable mod-
ules is of no use, because the module can’t be unloaded.

Hot-swapping and dynamic update features avoid
such problems, and offer many exciting benefits for
an operating system. Kernel code can be changed on
the fly, adapting to user behaviour and access patterns.
Patches can be applied dynamically, without the need to
reboot or even affect service to applications.

K42 is a research operating system supporting hot-
swapping, and in recent work [5] we have developed
dynamic update features using hot-swapping. Although
the implementation of these features depends partly on
K42’s unique object-oriented structure, we believe they
could be applied to a commodity operating system such
as Linux, with acceptable levels of performance.

In the rest of this paper, Section 2 introduces the K42
operating system, Section 3 covers its hot-swapping
feature, Section 4 details our implementation of dy-
namic update in K42, Section 5 discusses the applica-
tion of these features to Linux, Section 6 covers some
related work, and Section 7 concludes.

2 K42 background

K42 [8] is an open-source general-purpose operating
system being developed at IBM® Research for cache-
coherent multiprocessors. It is designed to be highly
scalable, from small SMP machines that we expect to
become ubiquitous, to large-scale NUMA systems. It
presently runs only on 64-bit PowerPC hardware (such



as IBM pSeries® and Apple® G5), but is designed to be
portable; in the past it has also been used on MIPS sys-
tems. K42 supports the Linux API and ABI for user-
level applications [1], and uses Linux code in the kernel
for its device drivers and network stack [10].

Although it implements the Linux API, K42 is struc-
tured very differently from a standard Linux system.
K42 implements much of what is traditionally consid-
ered kernel functionality at user-level, in libraries and
server processes. For example, K42’s fundamental IO
model is event-driven; all blocking operations are emu-
lated in library code [1]. Threads and the scheduler are
also implemented at user level [9].

2.1 Object model

K42 is implemented in C++, and uses a modular object-
oriented design to achieve multiprocessor scalability,
enhance customisability, and support novel features
such as hot-swapping and dynamic update. Unlike
modules in Linux, K42 objects are fine grained, and en-
capsulate all their data behind function interfaces.

Each resource (for example, virtual memory region,
network connection, open file, or process) is managed
by a different set of object instances [3]. Each object
encapsulates the meta-data necessary to manage the re-
source as well as the locks necessary to manipulate the
meta-data, thus avoiding global locks, data structures,
and policies. This also enables adaptability, because
different resources can be managed by different imple-
mentations.

K42 uses clustered objects [2], a mechanism that
enables a given object to control its own distribution
across processors. Each clustered object is invoked
using indirection through an object translation table
(OTT). The OTT is stored in processor-specific mem-
ory, so the same object reference can transparently in-
voke different objectrepresentativeson different CPUs.
The same OTT mechanism is used to implement K42’s
hot-swapping feature, as discussed in the next section.

2.2 Quiescence detection

K42 detects quiescent states using a mechanism simi-
lar to read copy update (RCU) in Linux [11]. K42’s
quiescence detection mechanism makes use of the fact
that each system request is serviced by a new kernel
thread, and that all kernel threads are short-lived and
non-blocking. This differs from RCU, which operates

only around critical sections such as locks, because
Linux has long-lived kernel threads.

Each thread in K42 belongs to a certain epoch, or
generation, which was the active generation when it
was created. A count is maintained of the number of
live threads in each generation, and by advancing the
generation and waiting for the previous generations’
counters to reach zero, it is possible to determine when
all threads that existed on a processor at a specific in-
stance in time have terminated [7].

The generation count mechanism is used to support
deferred object deletion, and enable hot-swapping and
dynamic update, as detailed in the next section.

3 Hot-swapping

Using the object translation table, hot-swapping [2, 13]
was implemented in K42. Hot-swapping allows an ob-
ject instance to be transparently switched to another im-
plementation while the system is running.

A hot-swap operation, as shown in Figure 1, consists
of the following six phases:

1. Prior to an update, threads are invoking methods
in an object via the OTT. In this case the system
incurs no performance overhead, besides the cost
of pointer indirection through the OTT.

2. A mediator object is interposed, by setting the
OTT entry for the object to point to it. The media-
tor then tracks all incoming calls, forwarding them
to the old object, and advances the thread gener-
ation, waiting for the previous thread generation
counters to all reach zero.

3. Once previous thread generation counters are zero,
the mediator is guaranteed that all threads execut-
ing in the object are being tracked by it. It now
begins blocking calls by new threads into the ob-
ject, while waiting for all the calls it has tracked
to complete; to avoid deadlock, recursive calls are
not blocked.

4. Once all forwarded calls complete, the object is
quiescent, and can be safely swapped. State trans-
fer functions are used to import its state into the
new object.

5. The mediator sets the OTT entry to point to the
new object (allowing new calls to directly invoke



�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

?
?

Old
Threads

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Old

New
Mediator

a
b
c

?

Threads

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

New

Old

Mediator
Threads

b

e
d

(a) prior (b) forward (c) block

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

New

Old

Mediator
Threads

f
e
d

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

Mediator

Old

New

Threads

f
e
d

g

�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������

?
?

Threads
New

(d) transfer (e) complete (f) post

Figure 1: Phases in an object hot-swap: (a) prior to the swap threads invoke an object directly; (b) a mediator object is
interposed, forwarding new calls to the object; (c) once all calls are tracked, the mediator blocks incoming calls and waits for
the existing ones to finish; (d) when the object is quiescent, state is transferred to its replacement; (e) the mediator forwards
blocked calls to the new object; (f) the old object and mediator are destroyed.

it), and forwards the calls it had previously blocked
to the new object.

6. The mediator destroys itself and the old object, and
the hot-swap is complete.

4 Dynamic update

Hot-swapping changes a single specific object instance,
and was designed to enable adaptability. More recently,
we have extended hot-swapping to support dynamic up-
date [4, 5], enabling operating system updates (such as
security fixes or performance improvements) to be ap-
plied on-the-fly.

In designing dynamic update, we identified the fol-
lowing key requirements for a dynamically updatable
operating system [5]:

Updatable unit: The system must have a unit of up-
date, with a well-defined and respected interface. This
enables the unit to be changed during an update oper-
ation without affecting the rest of the system. Many

systems are designed in a modular fashion, leading to
natural updatable units.

In K42 the updatable unit is the object instance.
K42’s coding style enforces encapsulation of data
within objects, allowing data structures to be changed
by a dynamic update.

Safe point: Dynamic updates should not occur while
any affected code or data is being accessed, so support
is required to achieve and detect a safe point. During a
hot-swap, K42 blocks new invocations of an object be-
ing updated, and then uses the generation-count mech-
anism to detect quiescence.

State tracking: For a dynamic update system to sup-
port changes to data structures, it must be able to lo-
cate and convert all such structures. In K42, we have
implemented factory objects [6] to perform this task.
Factories are responsible for creating, tracking, and de-
stroying every object of a specific class, and they form
the basis of our dynamic update implementation.



Factory ref

a b

Old factory

instances

Factory ref

a b

Old factory

instances

New factory

Factory ref

a b

Old factory

old instances

New factory

hot−swap

(a) prior (b) new factory (c) swap factory

Factory ref

a b c d

Old factory

old instances

New factory

new instances

Factory ref

a b c da’ b’

Old factory New factory

new instances

hot−swaps

updated instances

Factory ref

c da’ b’

New factory

(d) new factory installed (e) update instances (f) complete

Figure 2:Phases in the dynamic update of a multiple-instance object: (a) prior to update the old factory is maintaining in-
stances of a class; (b) instantiate a new factory for the updated class; (c) hot-swap the factory with its replacement (transferring
the set of managed instances); (d) after the hot-swap, new instantiations are handled by the updated factory code (thus creating
objects of the new type); (e) update old instances by hot-swapping each to an updated replacement; (f) the update is complete.

State transfer: When an update alters data structures,
or when an updated unit maintains internal state, the
state must be transferred to the new unit. In K42, a
transfer negotiation protocolis used to allow selection
of a common intermediate format. Then, state export
and import functions implemented by the object devel-
oper are invoked to perform the conversion.

Redirection of invocations: After the update occurs,
all future requests affecting the old unit should be redi-
rected. In K42, indirections are redirected after a hot-
swap by changing the object pointer in the OTT.

Version management: In order to package and ap-
ply an update, and in order to debug and understand
the running system, it it necessary to know what code
is actually executing. If an update depends on another
update having previously been applied, then support is
required to be able to verify this.

We currently use only a very simple version scheme
in K42. Each factory object carries a version number,

updated factories have increasing version numbers, and
before any update proceeds the version numbers are
checked for consistency.

A dynamic update in K42, as shown in Figure 2, con-
sists of the following phases:

1. A factory for the updated class is instantiated.

2. The old factory object is hot-swapped with the new
factory object. During the state transfer phase of
the hot-swap, the new factory imports the old fac-
tory’s set of live object instances.

3. After the hot-swap, all new object instantiations go
to the updated class.

4. The new factory traverses the set of instances it
received. For each, it creates an instance of the
updated object, and initiates a hot-swap between
the old and the new instances.

5. Finally, the update is complete and the old factory
is destroyed.



Dynamic update works, and has been used to apply
actual modifications by K42 developers to a running
kernel [5], it also has very low performance impact.

5 Applying these ideas to Linux

At present, replacing elements of the Linux kernel is
only possible if those components have been compiled
as a module. Updating a Linux kernel module requires
full removal and re-insertion, so any resources that the
module provides will be unavailable during the update.
Furthermore, releasing these resources may not be pos-
sible (for example, a file system servicing currently
open files). We aim to investigate the feasibility of im-
plementing a K42-style dynamic update mechanism in
Linux to avoid these problems.

This section will address the current suitability of dy-
namic update in Linux, and present some ideas for fu-
ture work to enable us to proceed.

5.1 Approach

Although Linux supports loadable kernel modules, it is
not structured in the same highly modular fashion as
K42. Modules may reach into each other, and are not
required to encapsulate their state information. Further-
more, unlike K42’s OTT, there is no standard abstrac-
tion for invoking code in a module; once it has a func-
tion pointer to a module’s code, another module may
call that function directly. Rather than attempt the mam-
moth task of rewriting Linux to have clearer module
boundaries with a standard module invocation mecha-
nism, we will concentrate on adding dynamic update
features to a specific part of the kernel. If it proves
successful, future work may extend dynamic update to
other areas, or attempt such a restructure.

We have chosen to start with a file system driver mod-
ule, for the following reasons:

• All of the module’s symbols are statically defined,
and not directly accessible from outside the mod-
ule itself.

• Code in the module is always invoked through a ta-
ble of function pointers, such as thefile operations
or inodeoperationsstructures.

• File systems are commonly used as loadable mod-
ules, and offer a compelling example.

In the case of a file system, the structures of function
pointers can be used in the same way as K42’s OTT.
By overwriting the function pointers, we can interpose
or redirect calls to the module. Fortunately, many other
classes of modules use tables of function pointers in the
same way, allowing our design to extend beyond file
systems.

5.2 Requirements

Our initial design addressed the previously outlined re-
quirements for dynamic update as follows:

Updatable unit: As discussed, the updatable unit is a
file system driver module, although we hope to extend
this to other module classes.

Safe point: In order to update a module we need to
ensure that there are no kernel threads that are execut-
ing within any of the the module’s functions. In current
Linux kernel code, each module has a reference count,
incremented when the module is used by another part
of the kernel (for example, when a file is opened, the
file system’s usage count is incremented). However,
we have no indication of when the module’s code is
executed—it is possible for a module to have a non-
zero reference count, but not have any kernel threads
executing within the module. If we only allow dynamic
updates to be performed when the reference count is
zero, then we fall back to the existing case of requiring
a module to be unused before updating it.

Using the table of function pointers, we can inter-
pose a mediator as in K42; however, RCU in Linux does
not provide the same thread-based quiescence detection
mechanism, so we require an alternative. Two possibili-
ties include checking the stack of running kernel threads
to determine if any are executing inside the module, or
adding atomic counters at function entry and exit points.

Checking the stack of kernel threads would involve
walking through the stack frames of every kernel thread
in the system to determine which, if any, were execut-
ing within the affected module. The problem with this
approach is that, although it does not affect the base
case performance, it would significantly delay the criti-
cal phase of an update in which new calls are blocked.
It would also scale poorly as more kernel threads are
added.

We believe that adding a module use count, that is
incremented and decremented on entry to and exit from



all externally-callable functions, is the best option. This
will add a small cost to module invocations, but in re-
turn will enable us to efficiently detect quiescence by
waiting for the counter to reach zero.

State tracking: State tracking is required when data
structures with multiple instances, such as a file sys-
tem’s inode structures, are to be changed during a dy-
namic update. To track such state a module would be re-
quired to incorporate a factory; for example, by adding
each allocated inode to a list, if it doesn’t already do so.

State transfer: We intend to use a similar scheme to
the state transfer functions in K42. Each module sup-
porting dynamic update will be required to implement
state export and import functions—either marshalling
state when a module is being replaced, or unmarshalling
state when a module is replacing another.

In the case of a file system, data transfer could mean
flushing as much state as possible (such as free blocks)
to the disk cache, and placing the rest in a standard
structure that can be imported by all implementations
of the same file system.

Redirection of invocations: In order to redirect the
module’s function calls, we rely on the module export-
ing its interface in the form of structures containing
function pointers. At update time, these structures are
patched to refer first to the mediator object, and then
later to the new module.

Because the structures of function pointers used dif-
fer between module classes, we will initially only sup-
port file system modules.

Version management: Although it is not required for
an initial prototype implementation, we could use a
similar version numbering scheme to the simple one de-
veloped for K42.

5.3 Problems

Although we hope to extend our design beyond file sys-
tems, not all kernel modules are well suited to the up-
datable unit structure. Possible difficulties include:

• Modules containing code that must run in inter-
rupt context cannot be blocked by the interposing
object for long periods of time.

• Modules that do not export a clean interface to per-
form the update, or have entry points that are not
available to be patched later.

Some of these problems could be solved by making
Linux more modular, and enforcing isolation between
modules.

6 Related work

DKM [12] also supports dynamic kernel modification
for Linux, but rather than using dynamic updates to en-
able adaptation and on-line upgrade, its goal is to en-
able faster development and debugging of the kernel,
and as a result it has a different approach. DKM sup-
ports inserting tracepoints, nullifying functions, or re-
placing functions in the kernel. It does so by rewriting
the first few instructions of the affected function to jump
to modified code. DKM is more flexible than our sys-
tem, in that it can potentially change any function in the
kernel, but because it does not work at a module level,
and does not enforce quiescence during a modification,
it cannot support changes to data structures.

Nooks [14, 15] supports recoverable device drivers
on Linux, and could be extended to support updatable
drivers. In this system, shadow drivers monitor all calls
made into and out of a device driver, and reconstruct
a driver’s state after a crash using the driver’s public
API. Only one shadow driver must be implemented for
each device class (such as network, block, or sound de-
vices), rather than for each driver. The main drawback
of this approach is that there is a continual runtime per-
formance cost imposed by the use of shadows, unlike
conversion functions, which are only invoked at update
time. Its advantage is that drivers don’t need to be mod-
ified.

7 Conclusion

In this paper, we have outlined the implementation of
the hot-swapping and dynamic update features in K42.
We have also discussed how this technology could be
transferred to Linux; we are presently working on a pro-
totype implementation of these ideas within the Linux
kernel.



Acknowledgements

We wish to thank the K42 team at IBM Research for
their support of this effort, and Chris Yeoh for pestering
us to submit this work to Linux.conf.au. Rusty Russell
and Stephen Rothwell helped us with the Linux details.

National ICT Australia is funded by the Australian
Government’s Department of Communications, Infor-
mation Technology, and the Arts and the Australian Re-
search Council throughBacking Australia’s Abilityand
the ICT Research Centre of Excellence programs.

Availability

K42 is released as open source and is available from a
public CVS repository; for details refer to the K42 web
site athttp://www.research.ibm.com/K42/.

Legal statement

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM, PowerPC, and pSeries, are trademarks or registered
trademarks of International Business Machines Corporation
in the United States, other countries, or both. Linux is a trade-
mark of Linus Torvalds in the United States, other countries,
or both. Other company, product, and service names may be
trademarks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates. This document is provided
as is, with no express or implied warranties. Use the informa-
tion in this document at your own risk.

References

[1] Jonathan Appavoo, Marc Auslander, David Edelsohn,
Dilma Da Silva, Orran Krieger, Michal Ostrowski,
Bryan Rosenburg, Robert W. Wisniewski, and Jimi
Xenidis. Providing a Linux API on the scalable K42
kernel. InProceedings of the 2003 USENIX Technical
Conference, FREENIX Track, pages 323–336, San An-
tonio, TX, USA, June 2003.

[2] Jonathan Appavoo, Kevin Hui, Michael Stumm,
Robert W. Wisniewski, Dilma Da Silva, Orran Krieger,
and Craig A. N. Soules. An infrastructure for multipro-
cessor run-time adaptation. InProceedings of the ACM
SIGSOFT Workshop on Self-Healing Systems, pages 3–
8, Charleston, SC, USA, November 2002.

[3] Marc Auslander, Hubertus Franke, Ben Gamsa, Orran
Krieger, and Michael Stumm. Customization lite. In

Proceedings of the 6th Workshop on Hot Topics in Op-
erating Systems, May 1997.

[4] Andrew Baumann, Jonathan Appavoo, Dilma Da Silva,
Orran Krieger, and Robert W. Wisniewski. Improving
operating system availability with dynamic update. In
Proceedings of the 1st Workshop on Operating System
and Architectural Support for the On-Demand IT In-
frastructure, Boston, MA, USA, October 2004.

[5] Andrew Baumann, Gernot Heiser, Jonathan Appavoo,
Dilma Da Silva, Orran Krieger, Robert W. Wisniewski,
and Jeremy Kerr. Providing dynamic update in an op-
erating system. InProceedings of the 2005 USENIX
Technical Conference, Anaheim, CA, USA, April 2005.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides.Design Patterns. Addison-Wesley, 1995.

[7] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and
Michael Stumm. Tornado: Maximising locality and
concurrency in a shared memory multiprocessor oper-
ating system. InProceedings of the 3rd USENIX Sym-
posium on Operating Systems Design and Implementa-
tion, pages 87–100, New Orleans, LA, USA, February
1999. USENIX.

[8] IBM K42 Team. K42 Overview, August 2002. Avail-
able fromhttp://www.research.ibm.com/K42/.

[9] IBM K42 Team. Scheduling in K42, August 2002.
Available fromhttp://www.research.ibm.com/K42/.

[10] IBM K42 Team.Utilizing Linux Kernel Components in
K42, August 2002. Available fromhttp://www.research.
ibm.com/K42/.

[11] Paul E. McKenney, Dipankar Sarma, Andrea Arcan-
gelli, Andi Kleen, Orran Krieger, and Rusty Russell.
Read copy update. InProceedings of the Ottawa Linux
Symposium, 2002.

[12] Ronald G. Minnich. A dynamic kernel modifier for
Linux. In Proceedings of the LACSI Symposium,
September 2002.

[13] Craig A. N. Soules, Jonathan Appavoo, Kevin Hui,
Robert W. Wisniewski, Dilma Da Silva, Gregory R.
Ganger, Orran Krieger, Michael Stumm, Marc Aus-
lander, Michal Ostrowski, Bryan Rosenburg, and Jimi
Xenidis. System support for online reconfiguration.
In Proceedings of the 2003 USENIX Technical Confer-
ence, pages 141–154, San Antonio, TX, USA, 2003.

[14] Michael M. Swift, Muthukaruppan Annamalai,
Brian N. Bershad, and Henry M. Levy. Recovering
device drivers. InProceedings of the 6th USENIX
Symposium on Operating Systems Design and Im-
plementation, San Francisco, CA, USA, December
2004.

[15] Michael M. Swift, Brian N. Bershad, and Henry M.
Levy. Improving the reliability of commodity operating
systems. InProceedings of the 19th ACM Symposium
on OS Principles, Bolton Landing (Lake George), New
York, USA, October 2003.


