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Abstract module requires unmounting all file systems using that
module, which in turn means killing all processes that
K42 is an open-source research OS for 64-bit multipraave files open on those file systems. If the root file sys-
cessor systems, focusing on the PowétRhitecture. tem happens to be axt3file system, and a bug needs
It uses an object-oriented design to achieve good perfeybe fixed in theext3code, a kernel with loadable mod-
mance, scalability, customisability, and maintainabilityles is of no use, because the module can’t be unloaded.
K42 supports the LinukAPI and ABl allowing ittouse  Hot-swapping and dynamic update features avoid
unmodified Linux applications and libraries, and caguch problems, and offer many exciting benefits for
be deployed by running on an existing installation @fn operating system. Kernel code can be changed on
Linux. The development process of K42 is intended the fly, adapting to user behaviour and access patterns.
share concepts with Linux; many ideas have been trapatches can be applied dynamically, without the need to
ferred between the two projects. reboot or even affect service to applications.

K42 implements each system resource (such as am4z2 is a research operating system supporting hot-
open file or process) as a set of unique object instancg®apping, and in recent work [5] we have developed
and supports hot-swapping, which allows these objeeignamic update features using hot-swapping. Although
to be changed on-the-fly. This enables dynamic nge implementation of these features depends partly on
configuration and adaptability of the system, and whe@2’s unique object-oriented structure, we believe they
combined with a kernel module loader, supports dgould be applied to a commodity operating system such
namic update and hot patching of the OS. Examplas Linux, with acceptable levels of performance.
of this might include dynamically adapting to file ac- In the rest of this paper, Section 2 introduces the K42
cess patterns, or replacing insecure code in the netwegerating system, Section 3 covers its hot-swapping
stack without downtime. feature, Section 4 details our implementation of dy-

In this paper we will introduce K42, discuss ithamic update in K42, Section 5 discusses the applica-
hot-swapping capability, and suggest possible waystion of these features to Linux, Section 6 covers some
which this technology could benefit Linux. related work, and Section 7 concludes.

1 Introduction 2 K42 background

In a kernel supporting loadable modules, such as Lindg42 [8] is an open-source general-purpose operating
kernel code can be changed without a reboot, but oslystem being developed at IENResearch for cache-

in restricted circumstances. Code can be added, butdaherent multiprocessors. It is designed to be highly
can be removed only when the entire kernel is inactive;alable, from small SMP machines that we expect to
and only when no other parts of the kernel hold refepecome ubiquitous, to large-scale NUMA systems. It
ences to that code. For example, to update a file systerasently runs only on 64-bit PowerPC hardware (such



as IBM pSerie8and Applé& G5), but is designed to beonly around critical sections such as locks, because
portable; in the past it has also been used on MIPS sigiux has long-lived kernel threads.
tems. K42 supports the Linux APl and ABI for user- Each thread in K42 belongs to a certain epoch, or
level applications [1], and uses Linux code in the kerngéneration which was the active generation when it
for its device drivers and network stack [10]. was created. A count is maintained of the number of
Although itimplements the Linux API, K42 is struc-ive threads in each generation, and by advancing the
tured very differently from a standard Linux systengeneration and waiting for the previous generations’
K42 implements much of what is traditionally consideounters to reach zero, it is possible to determine when
ered kernel functionality at user-level, in libraries anall threads that existed on a processor at a specific in-
server processes. For example, K42's fundamental $@nce in time have terminated [7].
model is event-driven; all blocking operations are emu- The generation count mechanism is used to support
lated in library code [1]. Threads and the scheduler adeferred object deletion, and enable hot-swapping and
also implemented at user level [9]. dynamic update, as detailed in the next section.

2.1 Object model 3 Hot-swapping

K42is implemented in C++, and uses a modular Objeﬁ'sing the object translation table, hot-swapping [2, 13]

oriented design to achieve multiprocessor scalability, o implemented in K42. Hot-swapping allows an ob-
enhance customisability, and support novel featur% :

. X "&%t instance to be transparently switched to another im-
such as hot-swapping and dynamic update. Unhﬁ P y

S : . . fementation while the system is running.
modules in Linux, K42 objects are fine grained, and eh- . — .
. . L= A hot-swap operation, as shown in Figure 1, consists
capsulate all their data behind function interfaces.

. ._of the following six phases:
Each resource (for example, virtual memory region,

network connection, open file, or process) is manageq pyjor tg an update, threads are invoking methods
by a different set of object instances [3]. Each object in an object via the OTT. In this case the system

encapsulates the meta-data necessary to manage the r®incurs no performance overhead, besides the cost
source as well as the locks necessary to manipulate the of pointer indirection through the OTT.

meta-data, thus avoiding global locks, data structures,
and policies. This also enables adaptability, becausg, A mediator object is interposed, by setting the
different resources can be managed by different imple-  OTT entry for the object to point to it. The media-
mentations. tor then tracks all incoming calls, forwarding them
K42 uses clustered objects [2], a mechanism that to the old object, and advances the thread gener-
enables a given object to control its own distribution  ation, waiting for the previous thread generation
across processors. Each clustered object is invoked counters to all reach zero.
using indirection through an object translation table
(OTT). The OTT is stored in processor-specific mem-3. Once previous thread generation counters are zero,
ory, so the same object reference can transparently in- the mediator is guaranteed that all threads execut-
voke different objectepresentativesn different CPUs. ing in the object are being tracked by it. It now
The same OTT mechanism is used to implement K42’s begins blocking calls by new threads into the ob-
hot-swapping feature, as discussed in the next section. ject, while waiting for all the calls it has tracked
to complete; to avoid deadlock, recursive calls are
not blocked.
2.2 Quiescence detection
4. Once all forwarded calls complete, the object is
K42 detects quiescent states using a mechanism simi- quiescentand can be safely swapped. State trans-

lar to read copy update (RCU) in Linux [11]. K42's  fer functions are used to import its state into the
quiescence detection mechanism makes use of the fact peyw object.

that each system request is serviced by a new kernel
thread, and that all kernel threads are short-lived an&. The mediator sets the OTT entry to point to the
non-blocking. This differs from RCU, which operates  new object (allowing new calls to directly invoke
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Figure 1: Phases in an object hot-swap: (a) prior to the swap threads invoke an object directly; (b) a mediator object is
interposed, forwarding new calls to the object; (c) once all calls are tracked, the mediator blocks incoming calls and waits for
the existing ones to finish; (d) when the object is quiescent, state is transferred to its replacement; (e) the mediator forwards
blocked calls to the new object; (f) the old object and mediator are destroyed.

it), and forwards the calls it had previously blockedystems are designed in a modular fashion, leading to
to the new object. natural updatable units.

In K42 the updatable unit is the object instance.

6. The mediator destroys itself and the old object, apth2's coding style enforces encapsulation of data

the hot-swap is complete. within objects, allowing data structures to be changed
by a dynamic update.

4 Dynamic update

] ) . o Safe point: Dynamic updates should not occur while
Hot-swapping changes a single specific object instanggy aftected code or data is being accessed, so support

and was designed to enable adaptability. More recenlyyeqyired to achieve and detect a safe point. During a

we have extended hot-swapping to support dynamic Yps swap, K42 blocks new invocations of an object be-
date [4, 5], enabling operating system updates (SUChiA$ ndated, and then uses the generation-count mech-
security fixes or performance improvements) to be apsicm to detect quiescence.
plied on-the-fly.

In designing dynamic update, we identified the fol-

lowing key requirements for a dynamically updatable o .
operating system [5]: State tracking: For a dynamic update system to sup-

port changes to data structures, it must be able to lo-

cate and convert all such structures. In K42, we have
Updatable unit: The system must have a unit of upimplemented factory objects [6] to perform this task.
date, with a well-defined and respected interface. Thiactories are responsible for creating, tracking, and de-
enables the unit to be changed during an update opsreying every object of a specific class, and they form
ation without affecting the rest of the system. Manthe basis of our dynamic update implementation.
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Figure 2:Phases in the dynamic update of a multiple-instance object: (a) prior to update the old factory is maintaining in-
stances of a class; (b) instantiate a new factory for the updated class; (c) hot-swap the factory with its replacement (transferring
the set of managed instances); (d) after the hot-swap, new instantiations are handled by the updated factory code (thus creating
objects of the new type); (e) update old instances by hot-swapping each to an updated replacement; (f) the update is complete.

State transfer: When an update alters data structurespdated factories have increasing version numbers, and
or when an updated unit maintains internal state, thefore any update proceeds the version numbers are
state must be transferred to the new unit. In K42,checked for consistency.

transfer negotiation protocak used to allow selection ) ) o

of a common intermediate format. Then, state expditdynamic update in K42, as shown in Figure 2, con-
and import functions implemented by the object devetists of the following phases:

oper are invoked to perform the conversion. 1. A factory for the updated class is instantiated.

2. The old factory object is hot-swapped with the new
factory object. During the state transfer phase of
the hot-swap, the new factory imports the old fac-
tory’s set of live object instances.

Redirection of invocations: After the update occurs,
all future requests affecting the old unit should be redi-
rected. In K42, indirections are redirected after a hot-
swap by changing the object pointer in the OTT.
3. After the hot-swap, all new object instantiations go

Version management: In order to package and ap-  to the updated class.
ply an update, and in order to debug and understan
the running system, it it necessary to know what code
is actually executing. If an update depends on another
update having previously been applied, then support is
required to be able to verify this.

We currently use only a very simple version schemes. Finally, the update is complete and the old factory
in K42. Each factory object carries a version number, is destroyed.

The new factory traverses the set of instances it
received. For each, it creates an instance of the
updated object, and initiates a hot-swap between
the old and the new instances.



Dynamic update works, and has been used to applyin the case of a file system, the structures of function
actual modifications by K42 developers to a runnirgpinters can be used in the same way as K42's OTT.
kernel [5], it also has very low performance impact. By overwriting the function pointers, we can interpose

or redirect calls to the module. Fortunately, many other
classes of modules use tables of function pointers in the
5 Applying these ideas to Linux same way, allowing our design to extend beyond file
systems.
At present, replacing elements of the Linux kernel is
only possible if thoge components have been compllng Requirements
as a module. Updating a Linux kernel module requires
full removal and re-insertion, so any resources that tir initial design addressed the previously outlined re-
module provides will be unavailable during the updatguirements for dynamic update as follows:
Furthermore, releasing these resources may not be pos-

sible (for examp!e, a .ﬂle system servicing .Curre.ntllYdeatable unit:  As discussed, the updatable unitis a
open files). We aim to investigate the feasibility of im

i : . file system driver module, although we hope to extend
plementing a K42-style dynamic update mechanlsmtwIs t0 other module classes
Linux to avoid these problems. '

This section will address the current suitability of dy-

namic update in Linux, and present some ideas for f§afe point: In order to update a module we need to
ture work to enable us to proceed. ensure that there are no kernel threads that are execut-

ing within any of the the module’s functions. In current

Linux kernel code, each module has a reference count,
5.1 Approach incremented when the module is used by another part
Although Linux supports loadable kernel modules, it Qf the kern’el (for example,_when a file is opened, the

ile system’s usage count is incremented). However,

not structured in the same highly modular fashion as O , .
. we have no indication of when the module’s code is
K42. Modules may reach into each other, and are ng L :
. . : : executed—it is possible for a module to have a non-

required to encapsulate their state information. Further-

) ) . zero reference count, but not have any kernel threads
more, unlike K42’s OTT, there is no standard abstrac- . - .
. . . : ) . executing within the module. If we only allow dynamic
tion for invoking code in a module; once it has a func-

tion pointer to a module’s code, another module m updates to be performed when the reference count is

) . az’éro then we fall back to the existing case of requiring

call that function directly. Rather than attempt the mam-_ "’ -
- . a module to be unused before updating it.

moth task of rewriting Linux to have clearer module = ~. . . .

. . . X Using the table of function pointers, we can inter-
boundaries with a standard module invocation mechao-Se amediator as in K42+ however. RCU in Linux does
nism, we will concentrate on adding dynamic UpdaPeot rovide the samethrer;ld—based’ uiescence detection
features to a specific part of the kemel. If it prove@ ecphanism SO we require an alterngtive Two possibili-
successful, future work may extend dynamic updategés include ;:heckin ?he stack of runnin .kerneFI) threads
other areas, or attempt such a restructure. 9 9

. . . '5) determine if any are executing inside the module, or
We have chosen to start with a file system driver mod-, .. . : o
ule, for the following reasons: adding atomic counters at function entry and exit points.
' ’ Checking the stack of kernel threads would involve

« All of the module’s symbols are statically defined{"alking through the stack frames of every kernel thread

and not directly accessible from outside the mod! the system to determine which, if any, were execut-
ule itself. ing within the affected module. The problem with this

approach is that, although it does not affect the base
« Code in the module is always invoked through a t&ase performance, it would significantly delay the criti-
ble of function pointers' such as tﬁmioperations cal phase of an Update in which new calls are blocked.
or inode operationsstructures. It would also scale poorly as more kernel threads are
added.
 File systems are commonly used as loadable modWe believe that adding a module use count, that is
ules, and offer a compelling example. incremented and decremented on entry to and exit from



all externally-callable functions, is the best option. This ¢ Modules that do not export a clean interface to per-
will add a small cost to module invocations, but in re-  form the update, or have entry points that are not
turn will enable us to efficiently detect quiescence by available to be patched later.

waiting for the counter to reach zero.

Some of these problems could be solved by making

State tracking: State tracking is required when dat&inux more modular, and enforcing isolation between
structures with multiple instances, such as a file sywgodules.

tem’s inode structures, are to be changed during a dy-

namic update. To track such state a module would be re-

quired to incorporate a factory; for example, by adding

each allocated inode to a list, if it doesn'talready do sb.  Related work

State transfer: We intend to use a similar scheme t®KM [12] also supports dynamic kernel modification
the state transfer functions in K42. Each module suf§¥ Linux, but rather than using dynamic updates to en-
porting dynamic update will be required to implemer@tble adaptation and on-line upgrade, its goal is to en-
state export and import functions—either marshallir@ple faster development and debugging of the kernel,
state when a module is being replaced, or unmarshalligigd as a result it has a different approach. DKM sup-
state when a module is replacing another. ports inserting tracepoints, nullifying functions, or re-

In the case of a file system, data transfer could meRkcing functions in the kernel. It does so by rewriting
ﬂushing as much state as possib]e (SUCh as free b|odk®first few instructions of the affected function tojump
to the disk cache, and placing the rest in a standdfdmodified code. DKM is more flexible than our sys-
structure that can be imported by all implementatio#@M, in that it can potentially change any function in the
of the same file system. kernel, but because it does not work at a module level,
and does not enforce quiescence during a modification,
it cannot support changes to data structures.

Nooks [14, 15] supports recoverable device drivers

module’s function calls, we rely on the module export- Li d Id b tended t t undatabl
ing its interface in the form of structures containin n Linux, and could be extended to support updatable
vers. In this system, shadow drivers monitor all calls

function pointers. At update time, these structures & d

patched to refer first to the mediator object, and thgp]ade into and out of a device driver, and reconstruct

later to the new module. a driver’s state after a crash using the driver’'s public

Because the structures of function pointers used P! Only one shadow driver must be implemented for
each device class (such as network, block, or sound de-

fer between module classes, we will initially only sup-. . .
i y only vices), rather than for each driver. The main drawback

port file system modules. . ) X . )
of this approach is that there is a continual runtime per-
_ N . formance cost imposed by the use of shadows, unlike
Version management: Although itis not required for conversion functions, which are only invoked at update

an initial prototype implementation, we could use @me. Its advantage is that drivers don’t need to be mod-
similar version numbering scheme to the simple one dfted.

veloped for K42.

Redirection of invocations: In order to redirect the

5.3 Problems 7 Conclusion

Although we hope to extend our design beyond file sys-
tems, not all kernel modules are well suited to the up? this paper, we have outlined the implementation of
datable unit structure. Possible difficulties include: the hot-swapping and dynamic update features in K42.
We have also discussed how this technology could be
¢ Modules containing code that must run in intetransferred to Linux; we are presently working on a pro-
rupt context cannot be blocked by the interposirtgtype implementation of these ideas within the Linux
object for long periods of time. kernel.
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