éDevice-driven /O for Implicit
Paging Operations

Jeremy Kerr <jk@ozlabs.org>
IBM Linux Technology Center

mailto:jk@ozlabs.org

Outline

o K42 overview
 The K42 |/0O system
A, The device-driven model
l;i],"l'ul ':I' &

Implementation & experimentation

Further work

-4 K42 Overview

e Research OS

- Intended for easy experimentation
* Microkernel-style architecture

* Fast user/kernel-space message passing system
— Protected Procedure Call (PPC)

- Stub compiler to easily define new calls

. . Currently working on 64-bit POWER machines
o Compatible with Linux APl & ABI

How It works now...

o K42 1/0O subsystem

— File objects are kept in userspace
— write() is performed asynchronously

» essentially a memcpy()

* Walk through a fsync...

Current fsync Path

fsync) | [rem ()

File Cache Manager receives fsync()

Current fsync Path

fyncO [pom (o))
lsta rtPutPage()

File Representative manages reference to userspace file

Current fsync Path

syne L Fem (o))

lsta rtPutPagel()

FR

lsta rtWrite()

KernelPagingTransport

KernelPagingTransport passes I/O request to userspace...

Current fsync Path
o, Co)

lsta rtPutPagel()

lsta rtWrite()

KernelPagingTransport —

...over a shared ring-buffer, to the PagingTransport object

Current fsync Path
o o)

lsta rtPutPage() sta rtWrite()lv
lsta rtWrite()

KernelPagingTransport —

ServerFile object handles write operation

/O Request Structure

e Basic unit of I/0O

PagingRequest

o Shared with userspace
"+ fileToken member

i‘l | lll} ‘l1'|‘l '|.II"

type

fileToken
— reference to ServerFile

"y fileOffset
— opaque within kernel

addr

size

- K42 1/0O Subsystem

* |n summary:
- FCM (File Cache Manager)
 Manages mapped regions
- FR (File Representative)
* Holds references to userspace file objects
- ServerFile
» Userspace file object
- 1/0O performed by sending requests to userspace

* Requests are “pushed” to the device

Device-driven |/O

* Goal: Maximise usage of device bandwidth

— Perform implicit operations when device is idle

* New programming model for I/O operations
! 1) LY

- FCMs no longer asynchronously generate implicit
requests

- Instead, FCMs are queried for requests

e “pull model”

el
2

e
o
-
=
—
-
—
—_—

Current /O Activity

open |read/write sync

3
Q
X

/0 Activity

Time

Desired I/O Activity

A open |read/write sync

3
Q
>4

/O Activity

Time

Rationale

* Allows aggressive prefetch & page cleaning
— Should stabilise bursty I/O

— No need to be conservative

FCMs “know best” how to optimise implicit ops

* Low request latency

— Requests are only generated when the device is ready

— No need for a cancellation mechanism

el
2

e
o
-
—
—
-
—
—_—

Design

Keep track of pageable FCMs

— New class: PagingService

Generate requests
— New method: FCM: :getRequests()

Notify the transport that bandwidth is available
- New PPC: KernelPagingTransport::notify()

RIH
&

e
o
-
—
—
-
—
—_—

éDevice-driven Design

notify()
—» § KernelPagingTransport

- -‘.-_.--
-

‘1___.-"-""'.

')
|“ | lllll“ﬂ .I! "I .

Device-driven Design

notify()
—» § KernelPagingTransport

lgetRequests()

PagingService

The PagingService

PagingService

(FCMRef J)J)

o Clustered object
— One root object created at boot time
2 - One “representative” created per processor
W . FCMEs register with the PagingService on creation
— Only pageable FCMs

— De-reqister on destruction

.+ Referenced by the KernelPagingTransport

{[K
E
1]

[[om]]
[T

Device-driven Design

notify()
—» | KernelPagingTransport

lgetRequests()

PagingService

lgetRequests()

FCM (s)

-4 FCM::.getRequests()

* Method to retrieve a set of I/O requests

— Up to a specified maximum

* Implicit request pattern controlled by FCM

— Can be based on history, expected patterns
* Prefetch optimisation
* Resident-set research at UofT

— Easy to explore new ideas
 FCM inheritance

— Dynamic upgrade

el
2

e
o
-
—
—
-
—
—_—

Device-driven Design

notify()
—» § KernelPagingTransport > PagingTransport

lgetRequests() T

PagingService

lgetRequests()

—>

FCM (s)

Device-driven Design

notify() _
—» § KernelPagingTransport > PagingTransport

lgetRequests() T startWrite()l

getRequests() T

<+—

FCM (s)

Device-driven Design

notify()

T

notify() _
—» § KernelPagingTransport > PagingTransport

lgetRequests() T startWrite()l

getRequests() T

|

<+—

FCM (s)

Design: Current Model

N EI=)

lsta rtPutPage() sta rtWrite()lv
lsta rtWrite()

KernelPagingTransport —

Flow Control

KerneIPag - Bgnglransport

* Feedback loop provides flow control
— Restricted by ring-buffer availability

— Representative of device usage

-& Initial Concerns

* Global optimisation of implicit operations
— No longer possible?
. * Resource usage by PagingService
p - Don't want to tie up other resources

* Latency introduced for explicit operations

Tunables

* Implementation of FCM::getRequests()
— Prefetch optimisation, page cleaning patterns

— A whole area of research in itself...
ST Allocation of bandwidth to FCMs
— Which to query for requests?

— Priority between FCMs

RIH
i

e
o
-
—
—
-
—
—_—

The Implementation

lib/libc/fslib/PagingTransport.C |
lib/libc/fslib/PagingTransport.H |
lib/libc/io/FileLinux.C |
os/kernel/ObjectRefsKern.H |
os/kernel/bilge/CObjGlobalsKern.H |
os/kernel/init/KernellInit.C |
os/kernel/mem/FCM.C |
os/kernel/mem/FCM.H |
il os/kernel/mem/FCMDefaultMultiRep.C |
an os/kernel/mem/FCMFile.C |
os/kernel/mem/FCMFile.H |
os/kernel/mem/FR.H |
|
|
|
|
|
I
|
|
9

==
w
+
1

Ul
O RO UL EAANOPBMOLOPSOOR
+

++++++++-
+
+
+

=

os/kernel/mem/FRCommon.H

os/kernel/mem/FRPA. C 30 +++++
os/kernel/mem/FRPA.H 3
os/kernel/mem/KernelPagingTransport.C 60 +++++++++-
os/kernel/mem/KernelPagingTransport.H 16 +-
os/kernel/mem/Makefile 7 -

204 +++++++++H+HHH
166 +++++++++++++++++++H+HHHHH+H+
deletions(-)

os/kernel/mem/PagingService.C
os/kernel/mem/PagingService.H
20 files changed, 585 insertions(+), 3

|

e
o
-
—
—
-
—
—_—

Al
[T
.||I

Experimentation

Initial testing
— Copy between filesystems

- Time taken to sync changes to disk

Implementing a prefetch oracle

— Advance knowledge of pattern

Alter prefetch oracle

— Use history to determine pattern

RIH
i

e
o
-
—
—
-
—
—_—

Deswed /O Activity

open |read/write sync

3
o
X

/O Activity

Time

Actual I/O Activity

A |open |read/write sync

3

ax

/0 Activity

Time

Current Issues

* Current implementation is very aggressive

— PagingService blocks other operations while paging

e sync has no pages to flush
SV e High use of the PPC mechanism

— Potential bottleneck

[HLH]
"Itll"
[

Further Work

* Tune scheduler to allow true background paging
* Improve FCM-request allocation

.. * Implementation of prefetch/cleaning algorithm
STALL
A - FCM::getRequests()

Resources

e K42 website at IBM Research

- http://www.research.ibm.com/K42/

~* Patches
vy

— http://ozlabs.org/~jk/projects/k42/

e —
e mre—
-
- — —
—
=
— —
—_—

http://www.research.ibm.com/K42/
http://ozlabs.org/~jk/projects/k42/

-4 Legal

This work represents the view of the authors and
does not necessarily represent the view of IBM.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may
be trademarks or service marks of others.

