

Device-driven I/O for Implicit
Paging Operations

Jeremy Kerr <jk@ozlabs.org>

IBM Linux Technology Center

mailto:jk@ozlabs.org

Outline

• K42 overview
• The K42 I/O system
• The device-driven model
• Implementation & experimentation
• Further work

K42 Overview

• Research OS
– Intended for easy experimentation

• Microkernel-style architecture
• Fast user/kernel-space message passing system

– Protected Procedure Call (PPC)
– Stub compiler to easily define new calls

• Currently working on 64-bit POWER machines
• Compatible with Linux API & ABI

How it works now...

• K42 I/O subsystem
– File objects are kept in userspace
– write() is performed asynchronously

• essentially a memcpy()

• Walk through a fsync...

Current fsync Path

File Cache Manager receives fsync()

Current fsync Path

File Representative manages reference to userspace file

Current fsync Path

KernelPagingTransport passes I/O request to userspace...

Current fsync Path

...over a shared ring-buffer, to the PagingTransport object

Current fsync Path

ServerFile object handles write operation

I/O Request Structure

• Basic unit of I/O
• Shared with userspace
• fileToken member

– reference to ServerFile
– opaque within kernel

K42 I/O Subsystem

• In summary:
– FCM (File Cache Manager)

• Manages mapped regions
– FR (File Representative)

• Holds references to userspace file objects
– ServerFile

• Userspace file object
– I/O performed by sending requests to userspace

• Requests are “pushed” to the device

Device-driven I/O

• Goal: Maximise usage of device bandwidth
– Perform implicit operations when device is idle

• New programming model for I/O operations
– FCMs no longer asynchronously generate implicit

requests
– Instead, FCMs are queried for requests

• “pull model”

Current I/O Activity

Desired I/O Activity

Rationale

• Allows aggressive prefetch & page cleaning
– Should stabilise bursty I/O
– No need to be conservative

• FCMs “know best” how to optimise implicit ops
• Low request latency

– Requests are only generated when the device is ready
– No need for a cancellation mechanism

Design

• Keep track of pageable FCMs
– New class: PagingService

• Generate requests
– New method: FCM::getRequests()

• Notify the transport that bandwidth is available
– New PPC: KernelPagingTransport::notify()

Device-driven Design

Device-driven Design

The PagingService

• Clustered object
– One root object created at boot time
– One “representative” created per processor

• FCMs register with the PagingService on creation
– Only pageable FCMs
– De-register on destruction

• Referenced by the KernelPagingTransport

Device-driven Design

FCM::getRequests()

• Method to retrieve a set of I/O requests
– Up to a specified maximum

• Implicit request pattern controlled by FCM
– Can be based on history, expected patterns

• Prefetch optimisation
• Resident-set research at UofT

– Easy to explore new ideas
• FCM inheritance

– Dynamic upgrade

Device-driven Design

Device-driven Design

Device-driven Design

Design: Current Model

Flow Control

• Feedback loop provides flow control
– Restricted by ring-buffer availability
– Representative of device usage

Initial Concerns

• Global optimisation of implicit operations
– No longer possible?

• Resource usage by PagingService
– Don't want to tie up other resources

• Latency introduced for explicit operations

Tunables

• Implementation of FCM::getRequests()
– Prefetch optimisation, page cleaning patterns
– A whole area of research in itself...

• Allocation of bandwidth to FCMs
– Which to query for requests?
– Priority between FCMs

The Implementation
 lib/libc/fslib/PagingTransport.C | 13 +-
 lib/libc/fslib/PagingTransport.H | 11 +
 lib/libc/io/FileLinux.C | 8 -
 os/kernel/ObjectRefsKern.H | 4
 os/kernel/bilge/CObjGlobalsKern.H | 8 -
 os/kernel/init/KernelInit.C | 4
 os/kernel/mem/FCM.C | 6 +
 os/kernel/mem/FCM.H | 2
 os/kernel/mem/FCMDefaultMultiRep.C | 4
 os/kernel/mem/FCMFile.C | 55 ++++++++-
 os/kernel/mem/FCMFile.H | 6 +
 os/kernel/mem/FR.H | 11 +
 os/kernel/mem/FRCommon.H | 6 +
 os/kernel/mem/FRPA.C | 30 +++++
 os/kernel/mem/FRPA.H | 3
 os/kernel/mem/KernelPagingTransport.C | 60 +++++++++-
 os/kernel/mem/KernelPagingTransport.H | 16 +-
 os/kernel/mem/Makefile | 7 -
 os/kernel/mem/PagingService.C | 204 ++++++++++++++++++++++++++++++
 os/kernel/mem/PagingService.H | 166 +++++++++++++++++++++++++++
 20 files changed, 585 insertions(+), 39 deletions(-)

Experimentation

• Initial testing
– Copy between filesystems
– Time taken to sync changes to disk

• Implementing a prefetch oracle
– Advance knowledge of pattern

• Alter prefetch oracle
– Use history to determine pattern

Desired I/O Activity

Actual I/O Activity

Current Issues

• Current implementation is very aggressive
– PagingService blocks other operations while paging

• sync has no pages to flush

• High use of the PPC mechanism
– Potential bottleneck

Further Work

• Tune scheduler to allow true background paging
• Improve FCM-request allocation
• Implementation of prefetch/cleaning algorithm

– FCM::getRequests()

Resources

• K42 website at IBM Research
– http://www.research.ibm.com/K42/

• Patches
– http://ozlabs.org/~jk/projects/k42/

http://www.research.ibm.com/K42/
http://ozlabs.org/~jk/projects/k42/

Legal

• This work represents the view of the authors and
does not necessarily represent the view of IBM.

• Linux is a registered trademark of Linus Torvalds.
• Other company, product, and service names may

be trademarks or service marks of others.

