
Using Dynamic Feedback to Optimise Load Balancing Decisions

Jeremy Kerr
jeremy@redfishsoftware.com.au

Abstract

The goal of a network load balancer is to distribute a
workload evenly amongst a cluster of back-end servers.
At present there are a number of standard request allo-
cation schemes to distribute requests but none of these
can guarantee an even load distribution.

In order to improve the request allocation decisions
made, I present an implementation of a dynamic feed-
back system as an extension for an existing open source
load balancing package, Linux Virtual Server.

The feedback system reports server load to the load
balancer and updates the load balancer’s server weight-
ing tables to compensate for uneven server loads; the
goal of the feedback process is to restore the server
nodes to an equalised state. In order to test the ef-
fectiveness of the dynamic feedback system, a simula-
tion cluster was established and benchmarked in vari-
ous configurations, with and without dynamic feedback
in place. To simulate an unbalanced server load, one of
the servers was given an additional CPU-intensive task
to run.

The results of the experimentation show that the feed-
back system does optimise the request allocation; CPU
load of the servers is brought back to an even distribu-
tion with the dynamic feedback process running.

1 Introduction

The Linux Virtual Server (LVS) project is an open
source extension to the Linux kernel that provides net-
work load balancing functionality [8, 9]. To provide a
load balanced network service, a computer with a Linux
kernel modified with the LVS software (a ‘director’)
can be used to divide the provision of a network service
amongst a cluster of backend servers. LVS operates at
layers 3 and 4 of the TCP/IP stack, so can load balance

most IP-based services without regard for the applica-
tion protocol.

When a the first SYN packet for a new connection is
received by the director, the director must make a deci-
sion on which server node to allocate the new connec-
tion to, then forward the connection’s packets to that
node. To make these decisions, a request allocation al-
gorithm is used – because the backend servers operate
more reliably at lower loads, the ultimate goal of a re-
quest allocation algorithm is to maintain the servers at
the lowest load possible; this requires the load to be dis-
tributed evenly amongst all of the servers. The LVS
software has a number of request allocation schemes
available:

Round Robin New connections are allocated to the
node that has least-recently been used. Round
robin is the simplest of the allocation schemes, but
assumes that each request will represent a constant
amount of work – this is not always the case.

Least Connection Sharing New connections are allo-
cated to the server with the least number of open
connections. This way, servers that are busy han-
dling requests can be allocated less of a load. This
scheme is useful when the duration of the connec-
tion represents its cost – FTP for example.

Source/Destination HashingA hash of the addresses
within the packet’s headers is used to determine
the server to use – this allows allocations to be
made with a simple constant-complexity function,
and the connections do not have to be tracked by
the director. Unfortunately, the address space of
the incoming packets does not always give an even
distribution and does not reflect the load on the
servers.

Additionally, some protocols require persistency
with successive connections – for example, when a se-
cure HTTP (HTTPS) session is started, encryption keys

1

mailto:jeremy@redfishsoftware.com.au


are generated for the session. Because key generation
is a computationally expensive task, the keys are kept
by the client and server and used in subsequent con-
nections between the client and server pair. If the di-
rector allocates a new connection from the same client
to a different server, the keys will need to be regener-
ated. LVS can be configured to allocate new connec-
tions from an existing session to the same server to en-
able persistency.

A request for a network service does not always rep-
resent a fixed amount of work. For example, an HTTP
request may either be for a static HTML page, which
is relatively inexpensive to serve, or a complex dynami-
cally generated page which is much more computation-
ally expensive. Therefore we cannot guarantee that the
servers will be evenly loaded by evenly distributing the
requests.

This paper is an investigation into the use of dynamic
feedback in request allocation – where the ‘health’ of
each server is reported to the director so that it can be
used to improve allocation decisions. Dynamic feed-
back has been implemented in a client/server program
that inputs the load information into the weighting ta-
bles for LVS software.

2 Implementation

2.1 Design Considerations

During the design of the feedback software, the follow-
ing properties were established as desirable:

Modular Interface to Load Measurement The met-
ric used to calculate server load should be easily
changeable, preferably without having to recom-
pile the program. This allows the load measure-
ment to be better suited to each application. If the
load metric is generated from parameters that are
likely to affect the performance of the network ser-
vice, then the load data sent to the director would
be more applicable to the load balancing allocation
decisions.

Use of an Established ProtocolAn established proto-
col should be used to communicate load data to
allow the program to interoperate with other prod-
ucts.

Minimal Resource UsageThe purpose of the feed-
back system is to improve the performance of
a server cluster, so resource usage (particularly
memory usage and CPU load) must be kept at a
minimum for it to be useful.

2.2 The Network Element Control Proto-
col

In order to address the second requirement of the feed-
back system, two dynamic feedback protocols were
found and investigated – Cisco’s Dynamic Feedback
Protocol (DFP) [2] and the Network Element Control
Protocol (NECP) [1]. There are no specification doc-
uments available for DFP, as it appears to be a closed
protocol – this was the main reason for the decision to
implement NECP. Fortunately, NECP suits the require-
ments for this application well.

NECP was first published in September 2000, as an
Internet Draft. NECP provides a method of transferring
load data between the Network Element (the director)
and the Server Elements (the servers within the cluster).
NECP is an open protocol, and software based on it can
be released under any license [3].

NECP is TCP-based, where the director acts as the
NECP server, accepting incoming connections estab-
lished by NECP clients running on server nodes. A typ-
ical NECP session is structured as follows:

• The NECP process on the director is started, and
listens for incoming connections on TCP port
3262.

• NECP processes are started on the server nodes,
which then attempt to connect to the director pro-
cess.

• When a connection is established anINIT message
is sent to the director to establish the parameters of
the session. The director then replies with anINIT

ACK message.

• Once the server node is ready to process requests,
it sends aSTART packet. This packet includes the
details (IP sub-protocol, TCP/UDP port and for-
warding method) of the services that the server is
able to provide. The director replies with aSTART

ACK message.

2



• The director then sends periodicKEEPALIVE mes-
sages to the server, which is a request for the state
of the node. The server replies with aKEEPALIVE

ACK, including a number representing the current
state of the server. This number can vary from 0 to
100 – 0 signifying that this node is unable to pro-
cess further requests, 100 signifying that the server
is in perfect health.

• When a server is to be removed from the cluster
it sends aSTOPpacket to inform the director. The
director then replies with aSTOP ACK.

• The TCP connection is closed by the server.

If a reply is not received from a three successive
KEEPALIVE requests within a specified timeout, the di-
rector considers the server unavailable and removes it
from the server cluster. This allows transparent removal
of failed server nodes, increasing service reliability.

To address security concerns, the NECP protocol al-
lows packets to be authenticated by both the servers and
director. Authenticated messages are appended with a
20-bit hash of the packet, encoded with a shared cre-
dential. During an authenticated NECP session, only
packets with a valid hash are accepted. This encoded
hashing system prevents malicious entities from alter-
ing the behavior of the NECP server and clients, as the
hash cannot be generated correctly without the creden-
tial. When an authenticated NECP session is in use,
monotonically increasing sequence numbers are used in
each packet to prevent packet replay attacks. If a NECP
packet is received with a valid hash but an incorrect se-
quence number, the packet is discarded.

NECP also supportsEXCEPTION operations, which
enables a server node to request that packets with a spe-
cific source or destination address not be allocated to
it. Because LVS does not currently support this fine-
grained control, handlingEXCEPTION messages was
not necessary for this project.

At present, there are no known hardware or software
implementations of NECP [3]; a search for the string
“NECP” on the Internet reveals only the protocol spec-
ification.

2.3 Implementation of feedbackd

The implementation of dynamic feedback was named
feedbackd, in line with other add-ons available to the

LVS system – keepalived and ldirectord.

During the development of the feedback system, it
became apparent that the terms ‘NECP Server’ and
‘NECP Client’ could cause confusion when referring to
the two parts of feedbackd, as the ‘NECP Server’ pro-
cess actually runs on the director and not the servers.
To prevent confusion, the NECP Client (which runs on
the servers) is called an ‘agent’ and the NECP Server
(which runs on the director) is called a ‘master’. Table
1 summarises the names used for the feedbackd pro-
cesses.

Process Role Cluster Node
Master NECP Server Director
Agent NECP Client Servers

Table 1: Nomenclature of the feedbackd components

NECP was written in C to improve performance and
stability in high load environments.

2.4 Master Process

The master process is responsible for querying the
agents for server load status information, collating the
information and altering the load balancing decision ta-
bles accordingly. Figure1 shows the structure of the
master process.

The master process keeps two main tables - an array
of servers, and an array of services provided by those
servers. These are initialised to empty when the master
is started.

When a connection is established with an agent, a
server entry is added for that server address and the
NECP initialisation is performed to establish parame-
ters used for the subsequent NECP session. These pa-
rameters are also stored in the server array.

When a NECPSTART packet is received by the mas-
ter, an entry is added to the services table. Once
the master is aware of this service it schedules a
KEEPALIVE message for some time in the future.

The scheduler is based on an ordered linked list;
whenever a new event is scheduled, it is inserted into
the list after the last event scheduled for an earlier time.
When the task at the head of the list is due for execution
the scheduler is invoked and the task is processed. Tasks

3



Server-side
protocol
functions

Scheduler

Interface to
kernel LVS code

TCP Port
3262

Standard NECP
definitions

LVS server
tables

User-space

Kernel

Figure 1: Structure of the feedbackd master process

may be of two types - sending aKEEPALIVE message to
a server, or aKEEPALIVE timeout event.

When anyKEEPALIVE message is sent, aKEEPALIVE

timeout event is scheduled. Raising aKEEPALIVE time-
out event signifies that the master has not received a
reply to the lastKEEPALIVE message sent to a server
within a preset timeout period – these timeout messages
are removed from the task list if the reply is received
before the event is raised. If a timeout event is raised,
anotherKEEPALIVE packet is sent to the server, and a
counter incremented. If this counter reaches three (as
recommended in the NECP specification), the server is
considered failed and removed from the load balancing
tables.

When a response is received to aKEEPALIVE mes-
sage the health index is retrieved from the response
packet and processed to generate a weighting to be in-
serted into the LVS server tables. The health data from
the server ranges from 0 to 100, where 100 signifies

that the server is in perfect health, and 0 signifies that
the server is unable to process requests.

Initially, the server health values were used directly
in the load balancing tables – early testing showed an
overreaction to loaded servers – the weights would cy-
cle between 1 and 100, as the servers alternated be-
tween full load and no load. To overcome this, the
health values received from the agents are smoothed us-
ing a weighted-average function shown in Equation1.
This smoothing is performed to prevent sudden large
changes in the server weight values that result in an un-
stable cluster.

weightt = α×max(1,health)+ (1)

((1−α)×weightt−1)
where 0≤ α≤ 1

In order to interact with the load balancing software,
the master process uses a library provided with the LVS
software, libipvs. This module provides a set of func-
tions to establish a connection with the kernel-level load
balancing objects and manipulate the server tables.

2.5 Agent Process

The agent’s task is to monitor the load of the server and
send it to the master process when requested. Figure2
shows the structure of the agent process.

When the agent is started, it reads a configuration file
(/etc/necp.conf) to obtain parameters for the NECP ses-
sion. This configuration file contains the following data:

• The address of the director node running the mas-
ter process; and

• An entry for each service the machine can provide:

– A name for the service (eg. HTTP)

– The IP sub-protocol that the service uses
(TCP or UDP)

– The port on which the service operates

– The plugin to use to measure system load for
that service

– The routing method used to forward packets
to this server

4



Client-side
protocol
functions

Standard NECP
definitions

Load monitor
plugin

TCP Port
3262

Configuration
file

Figure 2: Structure of the feedbackd agent process

The agent then contacts the specified server and ini-
tiates an NECP session. As soon as the session has
begun, the agent notifies the master which services are
available on this node by sending an NECPSTART mes-
sage, which describes each available service.

The agent waits forKEEPALIVE packets from the
master; when one is received, the agent queries the load
by using the plugin specified for each service and re-
turns the load value in aKEEPALIVE ACK packet. After
the acknowledgment packet is sent to the master, the
agent waits for anotherKEEPALIVE packet.

When the agent is sent aSIGINT signal, it sends a
STOPmessage to the master and terminates. This shut-
down procedure notifies the master that the server node
is to be removed from the cluster.

3 Performance Analysis

Once the feedback system had been implemented, it
was tested to determine its behaviour in a load balanc-
ing environment and to ascertain whether the use of dy-
namic feedback is beneficial. To do this, a simulation
cluster was built and the request handling performance
measured with and without feedbackd in place.

The benchmarking process was similar to that used
by O’Rourke and Keefe in their performance evaluation
of Linux Virtual Server [7].

3.1 Benchmarking Environment

Benchmarking was conducted in an undergraduate
computer laboratory in the School of Computer Science
at The University of Western Australia, using a single
network of identical machines. Table2 shows the spec-
ifications of the computers used for testing. The soft-
ware on each machine was based on a minimal install
of Red Hat Linux 7.2, including only packages neces-
sary for testing. Although the compiler and linker were
not used during tests, these programs were used to build
all the software used on the cluster. The same kernel
was used on the client and server nodes, compiled from
the standard Linux 2.4.18 source, configured with only
necessary functionality.

Item Specification
Hardware

CPU Pentium Celeron 700MHz
CPU Cache 128 KB
Memory 256 MB
Network Interface Intel Ethernet Pro 100Mbps

Software
Operating System Linux Kernel 2.4.18
Distribution Red Hat Linux 7.2
C compiler gcc 2.96
Linker GNU ld 2.11.93
C Libraries glibc 2.2.5

Table 2: Specification of cluster nodes.

On startup, each of the nodes was configured to
allow a higher number of file descriptors per pro-
cess and the network read and write buffers were
increased in size. The size of the IP connection
tracking table was also increased. Details of the
changes made to facilitate benchmarking are avail-
able fromhttp://www.redfishsoftware.com.au/
projects/benchmarking/.

A total of 21 computers were used for testing – 4
servers, 1 director and 16 clients. Each of the nodes was
configured depending on its role in the testing process
as follows:

5

http://www.redfishsoftware.com.au/projects/benchmarking/
http://www.redfishsoftware.com.au/projects/benchmarking/


3.1.1 Server Nodes

The servers were running version 1.3.23 of the Apache
HTTP server. Apache was chosen because it is the most
widely used web server software on the Internet; ac-
cording to the Netcraft web server survey, 59.9% of
web servers are based on Apache, the next-most popular
server software being Microsoft’s IIS with 28.9% mar-
ket share [6]. The Apache daemon was configured for
high loads according to Gaudet’s performance notes [4].

Each server was configured to serve a small HTML
file – the size was chosen such that the entire HTTP
response could be transferred in a single 1500 byte Eth-
ernet frame so that network load does not become a per-
formance bottleneck.

3.1.2 Director Node

A separate kernel was built for the director, based on the
Linux 2.4.18 source with the ipvs 1.0.2 patch applied,
plus a minor patch to enable regular statistics logging.
As with the kernel built for other nodes, all unnecessary
functionality was removed from the kernel configura-
tion.

For the tests, the director was configured to use
LVS’s ‘direct routing’ forwarding method, which only
requires request packets to be processed by the director,
while response packets are sent directly from server to
client. Direct routing was used to reduce the load on the
director during tests and ensure that the director is not
the performance limiting factor.

3.1.3 Client Nodes

Httperf version 0.8 was installed on each client node,
modified as described by O’Rourke and Keefe to in-
crease the request rate generated [7, 5]. The parameters
used for all invocations of httperf were:

httperf --hog --server 10.0.0.1 --port 80

--uri index.html -t 8

The timeout figure of 8 seconds will classify any re-
sponse that does not arrive within 8 seconds to be an
error. Other options such as the connection rate and
number of connections were altered for each test.

3.1.4 Network

All benchmarking nodes were placed on one 100Mbps
Ethernet network. The IP addresses given to the clus-
ter nodes was split into two ranges - 192.168.0.2 to
.5 for the servers, and 10.0.0.2 to .18 for the clients.
The director node was given the address 192.168.0.1 for
the server network, plus the virtual IP address 10.0.0.1.
During testing the network was isolated so that external
traffic could not influence the benchmark results.

3.2 Testing Process

Each test applies a certainrequest rateto the cluster,
measured in requests per second. Given a certain re-
quest rate, the server cluster generates a set of responses
at theresponse rate– which may be equal to or less than
the request rate. If the response rate is less than the re-
quest rate, we can assume that at least one of the servers
in the cluster is at its maximum request-handling capac-
ity.

A benchmark involved a set of separate tests – start-
ing at a low request rate and increasing by 320 request
per second (20 per client) to establish the maximum re-
sponse rate from each benchmarking configuration.

Three benchmarks were conducted to analyse the be-
haviour of feedbackd. Initially, the cluster was tested
without feedbackd running to obtain a maximum ‘re-
sponse per second’ performance figure of the cluster.

To simulate an unevenly loaded cluster, one of the
four servers’ HTML pages was replaced with a simple
CGI script. As the CGI script is more computation-
ally expensive to serve, this simulates a situation where
one server is being allocated a disproportionately large
amount of expensive requests. This configuration was
then retested to determine the effect of an unbalanced
load.

For the final benchmark, feedbackd was added to the
unbalanced cluster configuration to ascertain whether or
not the presence of the dynamic feedback daemon can
re-balance the cluster load and improve performance to
original levels.

6



4 Results

4.1 Cluster Performance

Firstly, the cluster was benchmarked to give a baseline
performance figure. A request load was applied, start-
ing at 320 requests per second (rps) and increasing at
320 rps per test up to a maximum of 4160 rps. Figure3
gives the response rate performance of these tests.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

R
es

po
ns

es
 p

er
 S

ec
on

d

E
rr

or
s 

(%
)

Requests per Second

Response and Error Rates Under Request Load

Responses per Second
Errors

Figure 3: Response performance and error rates of the
evenly loaded cluster.

The evenly loaded cluster responds linearly to an in-
crease in request load up to 2880 rps, after which the
servers become fully loaded and response rate drops.
Error rates remain low up to and including the same
point of 2880 rps – higher loads cause a dramatic in-
crease of errors.

We can logically conclude that the load on the servers
reaches 100% at 2880 requests per second – to investi-
gate this, Figure4 shows the CPU usage during the tests
below, at and above the 2880 request per second load.

0

20

40

60

80

100

0 50 100 150 200 250 300

C
PU

 L
oa

d 
(%

)

Time (sec)

Server Load During Benchmarking

2560 RPS
2880 RPS
3200 RPS

Figure 4: CPU usage during tests of varying request
loads.

The server load of the test conducted at 2560 rps re-
mains under 100%, while the server load of the 2880
rps test reaches 100% in the later parts of the test –
this accounts for the slight increase in error rate at 2880
rps. The 3200 rps test shows an almost consistent server
load of 100%. This suggests that the limit on response
rates is due to the CPU usage on the servers.

4.2 Unbalancing the Cluster

To unbalance the server loads, one of the servers’
HTML pages was replaced with a small CGI script,
which is more expensive to serve. Figure5 shows the
performance of the cluster with this modification.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

R
es

po
ns

es
 p

er
 S

ec
on

d

E
rr

or
s 

(%
)

Requests per Second

Response and Error Rates Under Request Load

Responses per Second
Errors

Figure 5: Response performance and error rates of the
unevenly loaded cluster.

With this CGI script, we see a much higher error
rate from lower loads – this is becasue the CPU load
of the server with the CGI script reaches 100% much
earlier than the other servers. The error rate levels off
until the 2880 rps load, after which the other servers be-
come fully loaded and start adding to the error rate. The
shape of the response rate curve is similar to that of the
evenly loaded cluster but with a slightly less-than-linear
response to increasing request rates and a lower maxi-
mum. Again, this is attributed to the high load on the
one server.

Figure6 shows the CPU load of servers during a sin-
gle test at a low request rate of 640 rps – this illustrates
the higher load due to the CGI script. The difference in
CPU usage between the two servers ranges from around
50% to 80%. Clearly the servers with the HTML pages
are being underutilised while the CGI-based server is
under high load.

7



0

20

40

60

80

100

0 50 100 150 200 250 300

C
PU

 L
oa

d 
(%

)

Time (sec)

Server Load During Benchmarking

HTML Page
CGI Page

Figure 6: CPU usage during testing of the unevenly
loaded cluster with a 640 rps request load.

4.3 Deploying Feedbackd

For the next set of tests the feedbackd system was run
on the unbalanced cluster to attempt to restore the load
distribution to a balanced state. Figure7 shows the re-
sults of the benchmark.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

R
es

po
ns

es
 p

er
 S

ec
on

d

E
rr

or
s 

(%
)

Requests per Second

Response and Error Rates Under Request Load

Responses per Second
Errors

Figure 7: Response performance and error rates of the
unevenly loaded cluster with feedbackd running.

The response rate plot with feedbackd enabled shows
that the linear performance response is restored at lower
loads, indicating that the system is successfully redis-
tributing load away from the server with the CGI script.
With feedbackd in place, we also see the error rates de-
creased – Section4.4 provides a comparison of error
rates and performance figures directly.

Figure 8 shows the CPU usage during the test at
640 rps. The load applied in this test is identical to
that shown in Figure6 – the CPU usage of the server
with the CGI page is much closer to that of the other
servers; the feedback daemon is indeed directing load
away from the loaded server. Compared to the 50—

0

20

40

60

80

100

0 50 100 150 200 250 300

C
PU

 L
oa

d 
(%

)

Time (sec)

Server Load During Benchmarking

HTML Page
CGI Page

Figure 8: CPU usage during testing of the unevenly
loaded cluster with a 640 rps request load, with feed-
backd running.

80% load difference shown by Figure6, we see a much
smaller difference of 25—35%. Reducing this differ-
ence further is an area of future improvement for the
feedback system.

4.4 Performance Comparison

Figure 9 shows the response rate plots of all three
benchmarks – the initial baseline test, the unevenly
loaded cluster and the unevenly loaded cluster with
feedback.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

R
es

po
ns

es
 p

er
 S

ec
on

d

Requests per Second

Response Rates of Benchmark Configurations

Balanced
Unbalanced

Unbalanced + Feedback

Figure 9: Response rate performance of the three clus-
ter configurations.

The presence of the feedback system gives an im-
provement in response rates at lower loads. At higher
loads however, the feedback system is unable to main-
tain balance, and the request rate drops to slightly be-
low that of the cluster without feedbackd running. The
slight performance degradation in the feedbackd plot

8



can be attributed to the presence of an extra process (the
feedbackd agent) running on the servers.

Figure10 shows the error rates from the same three
benchmarks.

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500 4000 4500

E
rr

or
s 

(%
)

Requests per Second

Error Rates of Benchmark Configurations

Balanced
Unbalanced

Unbalanced + Feedback

Figure 10: Error rates of the three cluster configura-
tions.

We see a marked improvement in the error rates with
the addition of feedbackd – due to the reduction in load
on the server with the CGI script.

5 Conclusion

The results presented here show a definite improvement
in the cluster’s performance with the addition of the
feedbackd system in both response rates and error rates.
The performance increase is only present at lower loads;
however, a production environment would typically be
operating within a reasonable load bracket to ensure sta-
bility and reliability. In this situation the use of feed-
backd (or any other dynamic feedback system) would
be beneficial.

Based on the cluster configuration used in these tests,
if we were aiming to provide a service with a 99.5%
sucessful response rate (ie, 99.5% of the responses are
correct and arrive within 8 seconds), the addition of
feedbackd allows us to operate at loads 2.3 times greater
than that of a system without feedbackd.

5.1 Further Work

Although the feedback system gives an increase in clus-
ter performance and reliability, I believe this could be

improved further by adjustment of both the measure-
ment metric and smoothing function.

Throughout this test, the definition of server load has
been restricted to solely CPU usage. In this case the ser-
vice provision task has been purely CPU-based, with lit-
tle dependence on other system resources, such as disk
access. Because of this, load measurement plugin used
to report ‘server health’ only measures CPU usage. The
performance of a production server cluster would be de-
pendent on more than just CPU usage; other plugins
could be developed to monitor these aspects of server
load.

The CPU-usage plot shown by Figure8 indicates
that there is still a difference between the load of the
server nodes – this could be reduced by the use of
an alternative smoothing or load-distribution function
in the master process. Perhaps a logarithmic scale of
weights could be developed to move request allocation
away from busy servers more effectively. Once an equal
server loading is achieved, we can expect to see a fur-
ther increase in the cluster’s overall performance.

References

[1] CERPA, A., ELSON, J., BEHESHTI, H.,
CHANKHUNTHOD , A., DANZIG , P., JALAN ,
R., NEERDAELS, C., CHROEDER, T., AND

TOMLINSON, G. NECP – the network element
control protocol, March 2000.

[2] CISCO SYSTEMS. The cisco dynamic
feedback protocol, August 2002. http:
//www.cisco.com/warp/public/cc/pd/
ibsw/mulb/tech/dfp_wp.htm [2002, 20
September].

[3] ELSON, J. Private communication: “Re: NECP
Protocol”, July 2002.

[4] GAUDET, D. Apache http server version 1.3 –
Apache performance notes. http://httpd.
apache.org/docs/misc/perf-tuning.html
[2002, 28 May].

[5] MOSBERGER, D., AND JIN , T. httperf - A tool to
measure web server performance. InProceedings,
USENIX Symposium on Internet technologies and
Systems(1997), pp. 59–76.

9

http://www.cisco.com/warp/public/cc/pd/ibsw/mulb/tech/dfp_wp.htm
http://www.cisco.com/warp/public/cc/pd/ibsw/mulb/tech/dfp_wp.htm
http://www.cisco.com/warp/public/cc/pd/ibsw/mulb/tech/dfp_wp.htm
http://httpd.apache.org/docs/misc/perf-tuning.html
http://httpd.apache.org/docs/misc/perf-tuning.html


[6] NETCRAFT. Netcraft web server survey, May 2002.
http://www.netcraft.com/survey/ [2002, 28
May].

[7] O’ROURKE, P., AND KEEFE, M. Performance
evaluation of Linux Virtual Server, April 2001.

[8] ZHANG, W. Linux Virtual Server for scalable net-
work services. InProceedings, Ottawa Linux Sym-
posium(2000).

[9] ZHANG, W. Linux Virtual Server web site,
2002.http://www.linuxvirtualserver.org/
[2002, 15 May].

10

http://www.netcraft.com/survey/
http://www.linuxvirtualserver.org/

	Introduction
	Implementation
	Design Considerations
	The Network Element Control Protocol
	Implementation of feedbackd
	Master Process
	Agent Process

	Performance Analysis
	Benchmarking Environment
	Server Nodes
	Director Node
	Client Nodes
	Network

	Testing Process

	Results
	Cluster Performance
	Unbalancing the Cluster
	Deploying Feedbackd
	Performance Comparison

	Conclusion
	Further Work


